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In the beginning, there was Hadoop MapReduce…

● Simplified parallel programming model
● All computations broken into two parts

● Embarassingly parallel map phase: apply single operation to every key,value-pair, 
produce new set of key,value-pairs

● Combining reduce phase: Group all values with identical key, performing combining 
operation to get final value for key

● Can perform multiple iterations for computations that require
● I/O intensive 

● Map writes to local storage.  Data shuffled to reducer’s local storage, reduce reads.
● Additional I/O between iterations in multi-iteration algorithms (map reads from HDFS, 

reduce writes to HDFS)
● Effective model for many data analytics tasks

● HDFS distributed file system (locality aware – move compute to data)
● YARN cluster resource manager
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Example: K-Means Clustering with MapReduce

● Initially: Write out random cluster 
centers

● Map: 
● Read in cluster centers
● For each data point, compute nearest cluster 

center and write <key: nearest cluster, value: 
data point>

● Reduce:
● For each cluster center (key) compute 

average of datapoints
● Write out this value as new cluster center

● Repeat until convergence (clusters 
don’t change)
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MapReduce Problems

● Gated on IO bandwidth, possibly interconnect as well
● Must write and read between map and reduce phases
● Multiple iterations must write results in next time (e.g., new cluster 

centers)
● No ability to persist reused data
● Must re-factor all computations as map then reduce 

(and repeat?)
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What is Spark?

● Newer (2014) analytics framework
● Originally from Berkeley AMPLab/BDAS stack, now Apache project
● Native APIs in Scala.  Java, Python, and R APIs available as well.
● Many view as successor to Hadoop MapReduce.  Compatible with 

much of Hadoop Ecosystem.
● Aims to address some shortcomings of Hadoop 

MapReduce
● More programming flexibility – not constrained to one map, one 

reduce, write, repeat.
● Many operations can be pipelined into a single in-memory task
● Can "persist" intermediate data rather than regenerating every 

stage
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Spark Execution Model
● Master-slave parallelism
● Driver (master)

● Executes main
● Distributes work to executors

● Resilient Distributed Dataset (RDD)
● Spark's original data abstraction
● Partitioned amongst executors
● Fault-tolerant via lineage
● Dataframes/Datasets extend this abstraction

● Executors (slaves)
● Lazily execute tasks (local operations on 

partitions of the RDD)
● Global all-to-all shuffles for data exchange
● Rely on local disks for spilling data that's too 

large, and storing shuffle data

Driver
main()

…

Executor

Task

Task

Node 1

Executor

Task

Task

Executor

Task

Task

Node N

Executor

Task

Task

Node 0

= Java Virtual Machine Instance

= TCP Socket-based communication

Local disk(s)

Local disk(s)
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Spark Communication 
Model (Shuffles)

● All data exchanges 
between executors 
implemented via shuffle
● Senders (“mappers”) send 

data to block managers; block 
managers write to disks, tell 
scheduler how much destined 
for each reducer

● Barrier until all mappers 
complete shuffle writes

● Receivers (“reducers”) 
request data from block 
managers that have data for 
them; block managers read 
and send

Map task 
thread

Block 
manager

Disk

Reduce 
task 

thread
TCP

Spark 
Scheduler

Shuffle write

Shuffle read

Meta data
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RDDs (and DataFrames/DataSets)

● RDDs are original data abstraction of Spark
● DataFrames add structure to RDDs: named columns
● DataSets add strong typing to columns of DataFrames (Scala and 

Java only)
● Both build on the basic idea of RDDs

● DataFrames were originally called SchemaRDDs

● RDD data structure contains a description of the data, 
partitioning, and computation, but not the actual data 
… why?
● Lazy evaluation
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Lazy Evaluation and DAGs

● Spark is lazily evaluated
● Spark operations are only executed when and if needed
● Needed operations: produce a result for driver, or produce a 

parent of needed operation (recursive)
● Spark DAG (Directed Acyclic Graph)

● Calls to transformation APIs (operations that produce a new 
RDD/DataFrame from one or more parents) just add a new node 
to the DAG, indicating data dependencies (parents) and 
transformation operation

● Action APIs (operations that return data) trigger execution of 
necessary DAG elements

● Example shortly…
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Tasks, Stages, and Pipelining

● If an RDD partition's dependencies are on a single other RDD 
partition (or on co-partitioned data), the operations can be 
pipelined into a single task
● Co-partitioned: all of the parent RDD partitions are co-located with child 

RDD partitions that need them
● Pipelined: Operations can occur as soon as the local parent data is ready 

(no synchronization)
● Task: A pipelined set of operations
● Stage: Execution of same task on all partitions

● Every stage ends with a shuffle, an output, or returning data back 
to the driver.
● Global barrier between stages.  All senders complete shuffle write before 

receivers request data (shuffle read)
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Spark Example: Word Count
val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

flatMap maps one 
value to (possibly) 

many, instead of one-
to-one like map

groupByKey combines all 
key-value pairs with the 

same key (k, v1), …, 
(k,vn) into a single key-

value pair (k, (v1, …, vn)).

Collect returns all 
elements to the driver

Load file

• Let's like at a simple example: computing the number of 
times each word occurs

• Load a text file
• Split it into words
• Group same words together (all-to-all communication)
• Count each word
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val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

The Spark DAG
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Spark on XC: Setup options
● Cluster Compatibility Mode (CCM) option

● Set up and launch standalone Spark cluster in CCM mode, run interactively 
from mom node, or submit batch script

● Exact details vary based on CLE version and workload manager
● An example recipe can be found in: 

“Experiences Running and Optimizing the Berkeley Data Analytics Stack on Cray 
Platforms”, Maschhoff and Ringenburg, CUG 2015

● Shifter option
● Shifter containerizer (think “Docker for XC”) developed at NERSC
● Acquire node allocation

● Run master image on one node
● Interactive image on another (or login)
● Worker images on rest

● Cray’s analytics on XC product (in beta testing) uses this approach
● Challenge: Lack of local storage for Spark shuffles and spills
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Reminder: Spark Shuffle –
Standard Implementation

● Senders (“mappers”) send data 
to block managers; block 
managers write to local disks, 
tell driver how much destined for 
each reducer

● Barrier until all mappers 
complete shuffle writes

● Receivers (“reducers”) request 
data from block managers that 
have data for them; block 
managers read from local disk 
and send

● Key assumption: large, fast local 
block storage device(s) available 
on executor nodes

Map task 
thread

Block 
manager

Disk

Reduce 
task 

thread

Driver 
(scheduler, 
block and 

shuffle trackers)

Shuffle write

Shuffle read

Meta data

Node
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Shuffle on XC – Version 1

● Problems: No local disk on standard XC40
● First try: Write to lustre instead

● Biggest Issue: Poor file access pattern for lustre (lots of small files, constant 
opens/closes).  Creates a major bottleneck on Lustre Metadata Server (MDS).

● Issue 2: Unnecessary extra traffic through network 

Map task 
thread

Block 
managerLustre

Reduce 
task 

thread
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Shuffle on XC – Version 2

● Second try: Write to RAMDisk
● Much faster, but …
● Issues: Limited to lessor of: 50% of node DRAM or unused DRAM; Fills up quickly; 

Spark RAMDisk "flakiness"; takes away memory that could otherwise be allocated 
to Spark

● Spark behaves unpredictably when it's local scratch space fills up (failures not 
always simple to diagnose)

Map task 
thread

Block 
managerRAMDisk

Reduce 
task 

thread
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Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)
● Initially fast and keeps working when RAMDisk full
● Issues: Slow once RAMDisk fills; Round robin between directories (no bias 

towards faster RAM)

Map task 
thread

Block 
managerRAMDisk

Reduce 
task 

thread
TCP

Lustre

Copyright 2017 Cray Inc. 
26



Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)
● Initially fast and keeps working when RAMDisk full
● Issues: Slow once RAMDisk fills; Round robin between directories (no bias 

towards faster RAM), but can specify multiple RAM directories

Map task 
thread

Block 
managerRAMDisk

Reduce 
task 

thread
TCP

Lustre
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Shuffle on XC – with Shifter PerNodeCache

● Shifter implementation: Per-node loopback file system
● NERSC’s Shifter containerization (in Cray CLE6) provides optional loopback-mounted per-node temporary 

filesystem
● Local to each node – fully cacheable
● Backed by a single sparse file on Lustre – greatly reduced MDS load, plenty of capacity, doesn’t waste space
● Performance comparable to RAMDisk, without capacity constraints (Chaimov et al, CUG ‘16)

● Cray’s Analytics on XC project (in beta) will ship as a Shifter image, and use this approach

Map task 
thread
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thread
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Other Spark Configurations

● Many config parameters … some of the more relevant:
● spark.shuffle.compress: Defaults to true.  Controls whether 

shuffle data is compressed.  In many cases with fast interconnect, 
compression and decompression overhead can cost more than 
the transmission time savings.  However, can still be helpful if 
limited shuffle scratch space.

● spark.locality.wait: Defaults to 3 (seconds).  How long to wait for 
available resources on a node with data locality before trying to 
execute tasks on another node.  Worth playing around with -
decrease if seeing a lot of idle executors.  Increase if seeing poor 
locality.  (Can check both in history server.)  Do not set to 0!
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Spark Performance on XC: HiBench
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Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

● Intel HiBench
● Originally MapReduce, Spark 

added in version 4
● Compared performance 

with Urika XA system
● XA: FDR Infiniband, XC40: 

Aries
● Both: 32 core Haswell nodes
● XA: 128 GB/node, XC40: 256 

GB/node (problems fit in 
memory on both)

● Similar performace on 
Kmeans, PageRank, Sleep

● XC40 faster for Sort, 
TeraSort, Wordcount, 
Bayes



Spark Performance on XC: GraphX
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● GraphX PageRank
● 20 iterations on 

Twitter dataset
● Interconnect 

sensitive
● GX has slightly 

higher latency and 
lower peak TCP 
bandwidth than XC 
due to buffer chip
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Shuffle on XC – Theta’s SSDs
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● Another option, unique to Theta
● Theta system provides a 128GB SSD on every node, available for applications 
● Could be used as Spark local storage – this is what we do on Urika GX

● Shown to be fast on Urika-GX
● Slightly larger than max RAMdisk (128 vs 192/2=96), and no contention, but still a 

bit smaller than typically use.  



Shuffle on XC – Theta’s SSDs

Copyright 2017 Cray Inc. 
34

Map task 
thread

Block 
managerSSD

Reduce 
task 

thread

● Another option, unique to Theta
● Theta system provides a 128GB SSD on every node, available for applications
● Could be used as Spark local storage – this is what we do on Urika GX

● Shown to be fast on Urika-GX
● Slightly larger than max RAMdisk (128 vs 192/2=96), and no contention, but still a 

bit smaller than typically use.  Could be used in combination with RAMDisk, or 
Loopback w/ Shifter?
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Spark on KNL

● Cray and Intel have recently started a collaboration to 
investigate and improve Spark on KNL performance
● Java and Spark currently run
● Performance vs Skylake varies from 20% slower to >4x slower
● “Typical” benchmarks at larger sizes ~3x slower than a dual-

socket Skylake node
● Still early … just starting to benchmark and profile.

● Looking at issues, profiling, attempting to identify causes and 
potential solutions.

Copyright 2017 Cray Inc. 
35



Early findings and tips

● Lots of skinny executors work better than fewer fatter executors
● On Xeon-based nodes this is not necessarily the case – fat often works 

nearly as well or occasionally better
● On KNL, though, often find best results with 1-2 cores per executor

● Make sure to adjust executor memory appropriately – all about memory/core
● E.g., 64 executors with 1 core and 2GB each, rather than 1 executor with 64 cores 

and 128 GB
● Skinny executors have better memory locality
● Skinny executors also have less JVM overhead
● JVM has issues scaling to many threads, e.g., https://issues.scala-

lang.org/browse/SI-9823 (cache thrashing with isInstanceOf) 
● Hyperthreading generally not helpful for Spark (on either Xeon or 

Xeon Phi)
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Early findings and tips

● Limit GC parallelism from JVM
● E.g., -XX:+UseParallelOldGC -XX:ParallelGCThreads=<N>, 

where N ≤ available threads/# executors
● Especially important with lots of skinny JVMs

● Otherwise each JVM will try to grab 5/8 total threads

● MCDRAM configured as cache works best with Spark
● Seeing ~43% of accesses coming from MCDRAM, ~11% directly 

from DDR
● Currently no ability in JVM to take advantage of MCDRAM in flat 

mode
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Current Performance Gap

● Single node performance
● KNL node: 192 GB DDR4, 16 GB MCDRAM, 2TB P3700 PCIe

SSD
● Skylake node: Dual-socket node, 384GB DDR4, 2TB P3700 

PCIe SSD
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Benchmark KNL SKX-EP KNL/SKX

Spark terasort large (3.2 GB) 136 sec 34 sec 4x
Spark terasort huge (32 GB) 343 sec 94 sec 3.6x
Spark terasort gigantic (320 GB) 2570 sec 800 sec 3.2x



Summary

● Spark runs well on XC systems
● Key is to intelligently configure local scratch directories
● Analytics on XC project, including Spark, in Beta testing  

● Also planning to include Intel BigDL: Optimized Deep Learning in 
Spark

● Cray and Intel collaborating to understand and improve 
performance of Spark on KNL/Xeon Phi systems
● Initial tips:

● Skinny executors
● Limit GC threads

● On roadmap for future versions of Analytics on XC
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